Feature Extraction and Fusion Techniques for Patch-Based Face Recognition
نویسندگان
چکیده
Face recognition is one of the most addressed pattern recognition problems in recent studies due to its importance in security applications and human computer interfaces. After decades of research in the face recognition problem, feasible technologies are becoming available. However, there is still room for improvement for challenging cases. As such, face recognition problem still attracts researchers from image processing, pattern recognition and computer vision disciplines. Although there exists other types of personal identification such as fingerprint recognition and retinal/iris scans, all these methods require the collaboration of the subject. However, face recognition differs from these systems as facial information can be acquired without collaboration or knowledge of the subject of interest. Feature extraction is a crucial issue in face recognition problem and the performance of the face recognition systems depend on the reliability of the features extracted. Previously, several dimensionality reduction methods were proposed for feature extraction in the face recognition problem. In this thesis, in addition to dimensionality reduction methods used previously for face recognition problem, we have implemented recently proposed dimensionality reduction methods on a patch-based face recognition system. Patch-based face recognition is a recent method which uses the idea of analyzing face images locally instead of using global representation, in order to reduce the effects of illumination changes and partial occlusions. Feature fusion and decision fusion are two distinct ways to make use of the extracted local features. Apart from the wellknown decision fusion methods, a novel approach for calculating weights for the weighted sum rule is proposed in this thesis. On two separate databases, we have conducted both feature fusion and decision fusion experiments and presented recognition accuracies for different dimensionality reduction and normalization methods. Improvements in recognition accuracies are shown and superiority of decision fusion over feature fusion is advocated. Especially in the more challenging AR database, we obtain significantly better results using decision fusion as compared to conventional methods and feature fusion methods.
منابع مشابه
Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملFace Recognition Based Rank Reduction SVD Approach
Standard face recognition algorithms that use standard feature extraction techniques always suffer from image performance degradation. Recently, singular value decomposition and low-rank matrix are applied in many applications,including pattern recognition and feature extraction. The main objective of this research is to design an efficient face recognition approach by combining many tech...
متن کاملFace Recognition in Thermal Images based on Sparse Classifier
Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...
متن کاملAutomatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کاملDisguised Face Recognition by Using Local Phase Quantization and Singular Value Decomposition
Disguised face recognition is a major challenge in the field of face recognition which has been taken less attention. Therefore, in this paper a disguised face recognition algorithm based on Local Phase Quantization (LPQ) method and Singular Value Decomposition (SVD) is presented which deals with two main challenges. The first challenge is when an individual intentionally alters the appearance ...
متن کامل